

Towards smart management of PV in Swiss low-voltage grids

Insights into export tariff structures and curtailment policies

Gerard Marias Gonzalez, Jérémy Dumoulin, Nicolas Wyrsch, Christophe Ballif, Alejandro Pena-Bello

Photovoltaics and thin film electronics laboratory (PV-LAB), Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Microengineering (IEM), Neuchâtel, Switzerland

Introduction

- High PV penetration in low-voltage grids, crucial for Switzerland's energy transition, presents significant challenges for DSOs and may lead to costly grid upgrades [1]
- Alternative import tariffs are known to drive prosumer-level investment in storage and recover grid costs with minimal impact on the economics of PV systems [2]
- However, import tariffs only marginally mitigate the impact on the grid, as the major problem in lowvoltage networks comes from PV injection [2,3]

In this work, we investigate the effects of export tariffs and PV curtailment policies on managing PV exports to mitigate grid impacts without reducing the economic attractiveness of rooftop PV.

Results on a Swiss rural low-voltage grid

Private PV and storage investment

Tariff structure	DT ref.	DT var.	CT export daily	Curt. 50%	IRR monthly	CT monthly 50%	CT daily 50%
Profit (CHF p.a)	16104	6606	-37827	13184	-5880	15426	16090
Cost	543	526	748	480	529	472	463

(CHF p.a)

CT monthly and *CT daily* allow for the highest profit (PV capacity installed is the same in all scenarios)

Topology of the low-voltage rural network of this work, located in Essertines-sur-Yverdon (32 buildings) *IRR monthly* tariff does not encourage the use of batteries and therefore has almost no effect on grid impacts

References

[1] Eidgenossenschaft S. Bundesgesetz "uber eine sichere Stromverso mit erneuerbaren En-ergien "Anderung des Energiegesetzes und des Stromversorgungsgesetzes. Schweizerische Eidgenossenschaft. 2023

[2] Pena-Bello A, Junod R, Ballif C, Wyrsch N. Balancing DSO interests and PV system economics with alternative tariffs. Energy Policy. 2023

[3] J. Holweger, L. Bloch, C. Ballif, and N. Wyrsch, "Mitigating the impact of distributed PV in a low-voltage grid using electricity tariffs," Electr. Power Syst. Res., 2020

Acknowledgments

This research project was financially supported by **Romande Energie.**

Conclusion & Outlook

Curtailment reduces grid impacts without limiting PV penetration, unlike capacity-based or irradiancebased export tariffs, which strongly discourage PV installation.

Combining curtailment with a capacity-based component in the import tariff also encourages the use of energy storage, which maximizes PV self-consumption and reduces energy imports. This approach is also the most profitable for prosumers, given the same PV capacity. Similar results are observed in both urban and semi-urban areas.

E

6

Future work will focus on tariff fine-tuning, and exploring the impact of resource sharing and local energy communities.

Contact: gerard.mariasgonzalez@epfl.ch - jeremy.dumoulin@epfl.ch - alejandro.penabello@epfl.ch