

University of Applied Sciences and Arts of Southern Switzerland

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

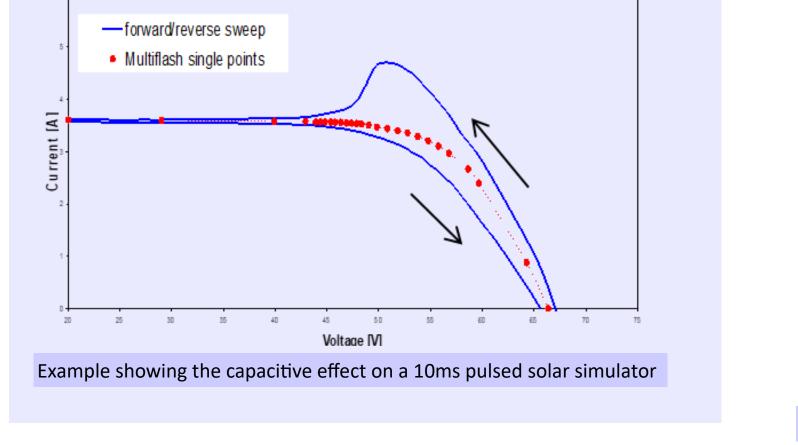
Swiss Federal Office of Energy SFOE

Institute for Applied Sustainability to the Built Environment

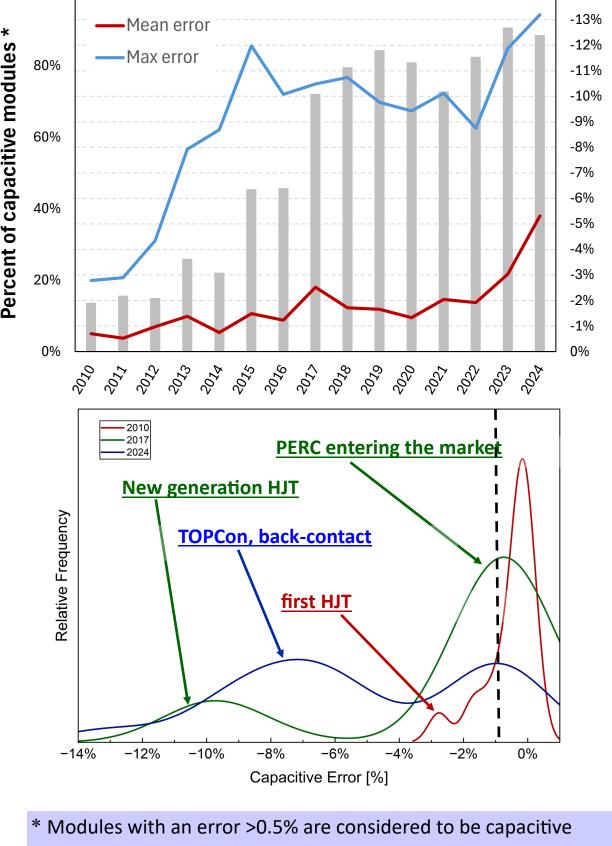
Enhancing Solar Module Testing: A Faster and Accurate Measurement Approach for High Efficiency Modules

Flavio Valoti, Gabi Friesen, Mauro Caccivio, Giovanni Bellenda

SUPSI-PVLab, Via Flora Ruchat-Roncati 15, 6850 Mendrisio, Switzerland


ΜοτινατιοΝ

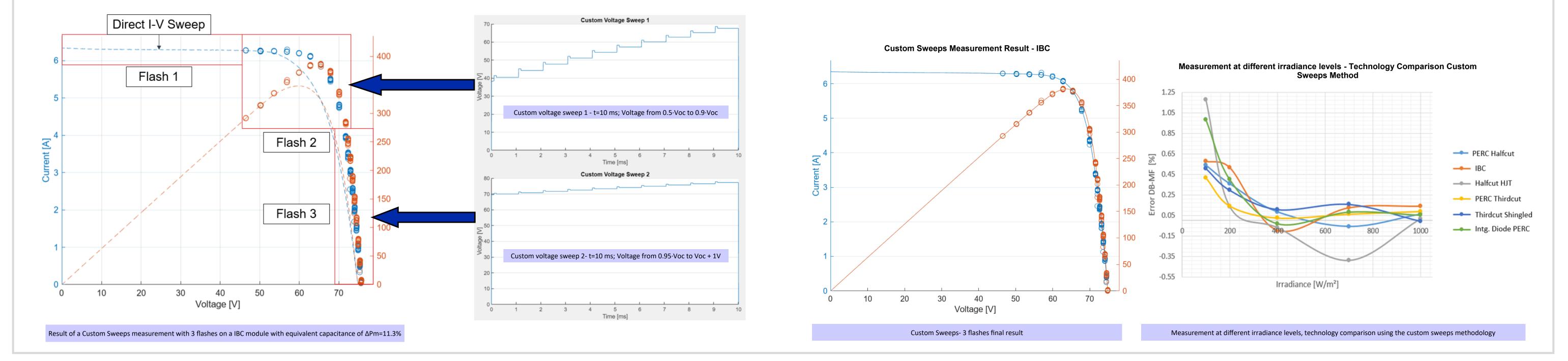
The **ATTRACT Project** (Advanced techniques for the characterisation of photovoltaic modules) aimed to improve the **electrical characterization of high efficiency modules** affected by capacitive effects, by **reducing the time effort** needed for measurements at different irradiance and temperature levels **without affecting accuracy**.


INTRODUCTION

CAPACITIVE EFFECT

The growing prevalence of highefficiency modules (PERC, HJT, IBC and TOPCon) with higher cell capacitances [1], has made accurate measurement with pulsed solar simulators increasingly challenging.

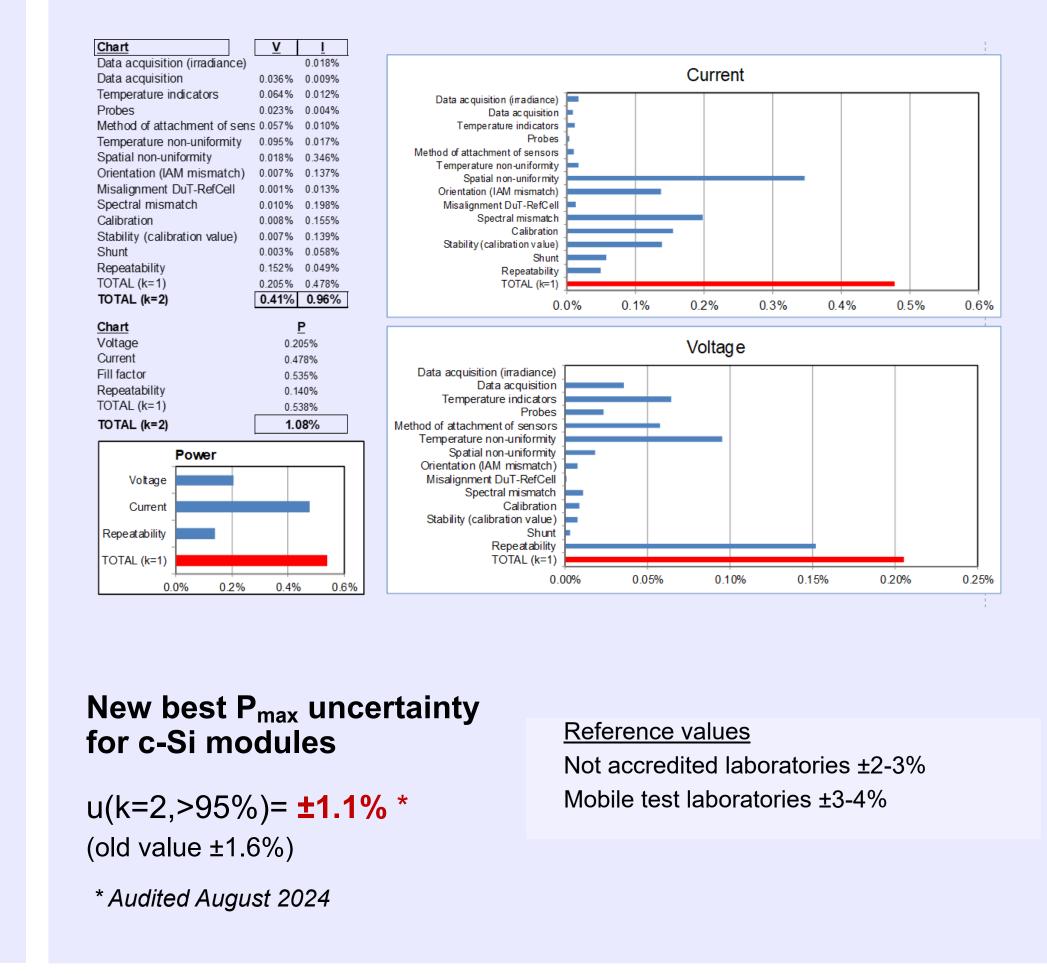
SUPSI PVLAB STATISTICS


ADVANTAGES & DISADANTAGES OF EXISTING TEST METHODS

Approach	Description	Applicability	Advantages	Disadvantages
Single I-V sweep	Fast voltage sweep from Isc to Voc within single flash.	Non-capacitive modules	Standard approach available on most test equipment's. Very fast.	Underestimates the power of capacitive modules.
Multi-flash measurement	Fixed voltage within multiple flashes.	High to ultra-high capacitive mod- ules	Very accurate.	Time consuming and high usage of lamp. Non standard modules (e.g reduced number of cells, ultra large cells,) are more complex to be measured.
Steady state measurement	Slow voltage sweep with a steady state solar simulator.	All modules	Avoidance of capacitive measurement errors.	Requires expensive Class A+ steady state solar simulator. Difficult control of module temperature.
Multi-sectional measurement	Reduced voltage sweeps within multi- ple flashes.	Low-medium ca- pacitive modules.	Fast and accurate method for low ca- pacitive modules.	A reconstruction of the I-V curve is re- quired.
Dragonback® measurement	Single sawtooth-like voltage ramp within single flash.	Most capacitive modules. Mainly for in-line testing in produc- tion.	Very fast and accurate.	Complex procedure for the determination of the appropriate sawtooth parameters.
Dark I-V measurement	I-V curve correction based on steady state and transient dark I-V curves.	To be validated for different technolo- gies.	Need of reduced number of flashes.	Requires specific electronic load. Accura- cy is limited by the accuracy of the series resistance Rs used for the correction.
I-V curve correction method	I-V curve correction based on theoretical models and additional measurements (e.g dark impedance)	To be validated for different technolo- gies.	Need of reduced number of flashes.	Accuracy is limited by the methodology and accuracy of the correction parame- ters.

FAST & ACCURATE MEASUREMENT PROCEDURE FOR CAPACITIVE MODULES

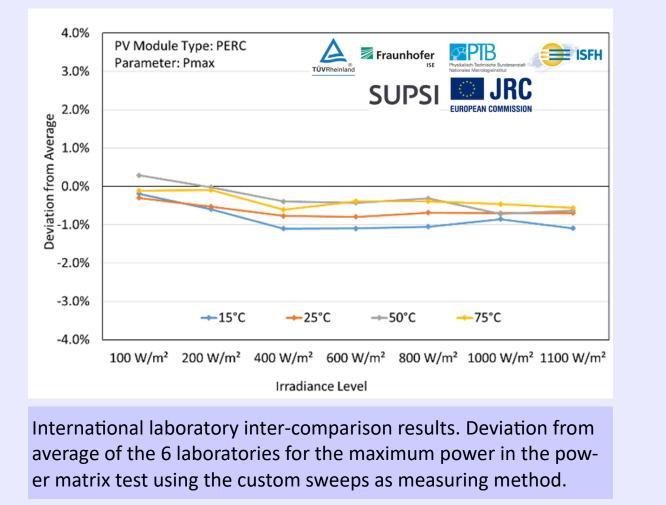
• The method consists in measuring the I-V curve of PV modules through a multi-flash approach that combines the direct sweep techniques with Dragonback[®] flashes [2].


- The I-V curve is obtained by combining the results of the flashes and fitting the curve.
- A direct I-V sweep is performed to obtain the initial segment of the curve (0 0.7.Voc), followed by 1-2 custom voltage sweeps to measure the remaining sections.

Result

- The Custom Sweeps approach was introduced and validated within an international laboratory intercomparison, demonstrating:
- \Rightarrow a reduction in the effective measurement time for a full power matrix of **10 times less** than the best reference method (multi-flash approach)

ACCURACY



\Rightarrow uncertainties close to the one achieved with the best reference methods (uPmax = ±1.1% [k=2])

 \Rightarrow close to constant uncertainties over the whole range of applicability (100-1100 W/m² and 15-65°C)

Test	Multi-flash	Custom Sweeps
Maximum power at STC	900 s (15 min)	90 s (1.5 min)
Measure at different Irradiance levels (GCO)	4500 s (75 min)	450 s (7.5 min)
Power Matrix	25200 s (420 min)	2520 s (42 min)

International laboratory inter-comparison partners: TÜV Rheinland Solar, Fraunhofer ISE, SUPSI PVLab, Institute for Solar Energy Research GmbH, Physikalisch-Technische Bundesantstalt (PTB) and the European Solar Test Installation (JRC).

References:

M. Pravettoni, D. Poh, J. Prakash Singh, J. Wei Ho, and K. Nakayashiki, "The effect of capacitance on high-efficiency photovoltaic modules: A review of testing methods and related uncertainties,"
A. Virtuani, G. Rigamonti, P. Beljean, G. Friesen, M. Pravettoni, and D. Chianese, "A fast and accurate method for the performance testing of high-efficiency C-Si photovoltaic modules using A 10 Ms single-pulse solar simulator," in Conference Record of the IEEE Photovoltaic Specialists Conference, 2012, pp. 496–500. doi: 10.1109/PVSC.2012.6317664.