
Modeling of Partial Shading at the Cell Level on Photovoltaic Modules
Jean-Paul Calin1,2,3, Jacques Levrat2, Antonin Faes1,2, Fahradin Mujovi2, Paul Rémondeau1, Kléber Nicolet-dit-Félix1, Bénédicte Bonnet-Eymard2, Didier Dalmazzone3,

Aïcha Hessler-Wyser1, Christophe Ballif1,2

EPFL, PV-Lab, Maladière 71b, CH-2002 Neuchâtel1; CSEM, Rue Jaquet-Droz 1, CH-2002 Neuchâtel2; Institut Polytechnique de Paris, ENSTA, 828 Boulevard des Maréchaux,

91120 Palaiseau, France3

Introduction Experimental Setup

Photovoltaic systems are highly sensitive to partial shading, which

can significantly reduce their efficiency and overall energy output. In

urban environments, where buildings and other structures frequently

cast shadows, this issue is particularly pronounced. Efficient shadow

modeling and electrical simulation are crucial for optimizing PV

system performance.

5. Module Shadow

4. Cell Shadow Raster

3. 3D Shaded Region

2. Vertices Projected on Ground Plane

1. Model Configuration

References

[1] A. Mermoud, “Pvsyst: a user-friendly software for pv-system simulation,” in Twelfth

European Photovoltaic Solar EnergyConference: proceedings of the International

Conference, 1994.

[2] W. F. Holmgren, C. W. Hansen, and M. A. Mikofski, “pvlib python: A python package for

modeling solar energy systems,” Journal of Open Source Software, vol. 3, no. 29, p. 884,

2018.

[3] B. A. de Sá, T. Dezuo, and D. Ohf, “Shadow modelling algorithm for photovoltaic

systems: extended analysis and simulation,” Journal of Control, Automation and Electrical

Systems, vol. 33, no. 5, pp. 1507–1518, 2022.

[4] G. W. Larson and R. Shakespeare, Rendering with Radiance: the art and science of

lighting visualization. Morgan Kaufmann Publishers Inc., 1998.

Method: Vertex Projection Approach

Fig. 1: Chimney shadow on solar roof tiles Fig. 2: Roof structure shadow on PV modules

Experimentally validated shadow simulation on cells in a module using vertex projection and ray tracing methods.

Both methods offer cell-level visibility, which is beyond the capabilities of PVSYST and enables optimization of module

parameters, such as cell and string interconnections.

Timed the 1-year hourly simulation as typically needed to compute Energy Yield:

▪ Vertex projection: offers cell-level visibility: runtime improved from 14 days to 9.93 hours

▪ Ray tracing: offers cell-level visibility and more precision by modeling light ray interactions: runtime of 5.05 hours

Next steps:

▪ Electrical simulation from cell to module level

Conclusion

Method: Ray Tracing Approach

Fig. 8: Irradiance map generated

Results

(b)

▪ Installed a chimney-like structure in

front of roof tile modules

▪ Captured images of shadow projection

throughout the day

▪ Monitored I-V curves, power,

irradiance, and temperature

State of the Art:

PVSYST1 is a professional software that supports fast shading factor

estimation. It uses a pure geometric approach, neglecting important

optical phenomena like reflection. Furthermore, the simulation is

done at the module level, offering no visibility at the cell level.
Fig. 3: Shading factor diagram from PVSYST simulation

Fig. 7: Projected shadow

Fig. 9: Shadow simulated

by vertex projection
Fig. 11: Irradiance maps simulated

with Radiance

Fig. 6: Model configuration

Fig. 10: Experimental images of shadows

Fig. 5: Measured irradiance

Vertex Projection Runtime Optimization

Goal : increase the speed of the vertex

projection simulation

▪ The most computationally intensive

step is the shadow raster

▪ Options for reducing the runtime:

✓ Optimize data structures and computation

✓ Check solar altitude angle: if negative,

skip

✓ Check the four corners of the cell: if all

corners are shaded (illuminated), assume

the whole cell is shaded (illuminated)

Reduce cell grid size (= 40)

Reduce the number of obstruction vertices

(n points = 20)

→ The runtime of the simulation step

decreased from 3 minutes to 8 seconds

Ray Tracing Runtime Optimization

Goal : increase the speed of the ray

tracing simulation

✓ Use a cylinder to model the obstacle

rather than 20 pairs of vertices

✓ Use fewer light ray bounces (=2)

Fig. 13: Polygon model

configuration

→ The runtime of the simulation step

decreased from 6.8 to 2.5 seconds

▪ The computational complexity depends

on the model configuration

▪ Options for reducing the runtime:

1. Model Configuration

2. Ray Tracing

3. Irradiance Map

Ray tracing provides more precise irradiance values by

modeling:

▪ Light ray interactions with materials: reflection, refraction,

absorption, transmission, and scattering

The Radiance package4:

▪ Calculates 3 components of light at each viewpoint: direct,

specular indirect, and diffuse indirect component

▪ Uses a hybrid Monte Carlo and deterministic ray tracing method

Fig. 12: Cylinder model

configuration

Fig. 4: Obstacle installed in front of monitored outdoor roof tile modules

▪ Pure geometric

approach with

visibility at cell

level

▪ Original algorithm

developed using

pvlib-python2 and

inspired from de Sá

et al.3

▪ Runtime optimization

steps are described

below

▪ Experimental validation on measured I-V curves

	Slide 1

